Lab-made tissue picks up the slack of Petri dishes in cancer research
New research demonstrates that previous models used to examine cancer may not be complex enough to accurately mimic the true cancer environment. Using oral cancer cells in a three-dimensional model of lab-made tissue that mimics the lining of the oral cavity, the researchers found that the tissue surrounding cancer cells can epigenetically mediate, or temporarily trigger, the expression or suppression of a cell adhesion protein associated with the progression of cancer. These new findings support the notion that drugs that are currently being tested to treat many cancers need to be screened using more complex tissue-like systems, rather than by using conventional petri dish cultures that do not fully manifest features of many cancers. "Research on cancer progression has been drawn largely using models that grow cancer cells in plastic dishes. Our research reveals a major shortcoming in the experimental systems used to study cancer development. When using simplified culture systems in which cells are grown on plastic, cancer cells grow as a two dimensional monolayer and lack the three-dimensional tissue structure seen in human cancer. As a result, complex interactions that occur between the cancer cells and the surrounding tissue layers are not accounted for," said first author Teresa DesRochers, PhD, a graduate of the Sackler School of Graduate Biomedical Sciences at Tufts, currently in the department of biomedical engineering at Tufts University School of Engineering. The researchers report that the three-dimensional network of cell interactions activates epigenetic mechanisms that control whether genes critical for cancer development will be [...]