Use of carbon nanoparticles paves way to customized cancer therapy

Source: www.azonano.com Author: Cameron Chai A research study by Jeffrey Myers from the University of Texas MD Anderson Cancer Center and James Tour from the Rice University has reported that a combination of carbon nanoparticles and existing drugs has the capability to improve head-and-neck cancer treatment, particularly when coupled with radiation therapy.   The novel technique encapsulates chemotherapeutic drugs using carbon nanoparticles, which sequester the drugs until their delivery into the targeted cancer cells, opening the door to develop customized therapies based on the requirements of individual patients. The researchers have developed a simple technique to mix Cetuximab, a targeting agent, and paclitaxel, a hydrophobic active chemotherapy agent marketed as Taxol, with hydrophilic carbon clusters that are functionalized with polyethylene glycol or PEG-HCC. According to the researchers, Cetuximab, paclitaxel and PEG-HCC ingredients combine easily and form a water-soluble compound that targets tumors more effectively than Taxol, while eliminating the toxic effects of Cremophor EL and paclitaxel on neighboring healthy cells. Cremophor EL is a carrier based on castor oil that makes the hydrophobic paclitaxel into a water-soluble compound and delivers it to patients intravenously. Tour commented that the novel technique utilizes a very small quantity of chemotherapy drug. Myers informed that tests involving the use of Cetuximab, paclitaxel and PEG-HCC ingredients and radiation therapy on mice demonstrated a substantial increase in destroying tumors. The researchers’ hypothesis is paclitaxel detects the tumor cells to the radiation effects and Cetuximab and PEG-HCC augment the delivery of paclitaxel into the cancer cells, Myers [...]

2012-02-19T10:42:23-07:00February, 2012|Oral Cancer News|

Taking out a cancer’s co-dependency: novel compound selectively kills cancer cells by blocking response to oxidative stress

Source: www.eurekalert.org Author: public release A cancer cell may seem out of control, growing wildly and breaking all the rules of orderly cell life and death. But amid the seeming chaos there is a balance between a cancer cell's revved-up metabolism and skyrocketing levels of cellular stress. Just as a cancer cell depends on a hyperactive metabolism to fuel its rapid growth, it also depends on anti-oxidative enzymes to quench potentially toxic reactive oxygen species (ROS) generated by such high metabolic demand. Scientists at the Broad Institute and Massachusetts General Hospital (MGH) have discovered a novel compound that blocks this response to oxidative stress selectively in cancer cells but spares normal cells, with an effectiveness that surpassed a chemotherapy drug currently used to treat breast cancer. Their findings, based on experiments in cell culture and in mice, appear online in Nature on July 13. The plant-based compound piperlongumine (PL), derived from the fruit of a pepper plant found in southern India and southeast Asia, appears to kill cancer cells by jamming the machinery that dissipates high oxidative stress and the resulting ROS. Normal cells have low levels of ROS, in tune with their more modest metabolism, so they don't need high levels of the anti-oxidant enzymes that PL stymies once they pass a certain threshold. "Piperlongumine targets something that's not thought to be essential in normal cells," said Stuart L. Schreiber, a senior co-author and director of the Broad's Chemical Biology Program. "Cancer cells have a greater dependence on ROS [...]

Go to Top