Searching for new pathways and treatments for head and neck squamous cell carcinoma

Source: www.onclive.com Author: Lauren M. Green Scientists now know a lot more about the genetic landscape of head and neck cancer and hope that eventually this knowledge will lead the way to new therapies, according to Aaron D. Tward, MD, PhD, of the Broad Institute of MIT and Harvard in Cambridge, Massachusetts. Tward described findings of recent collaborative research on the topic at the 2012 Chemotherapy Foundation Symposium. For this research, Tward, also with the Department of Otology and Laryngology at Harvard Medical School and a clinical fellow in those specialties at the Massachusetts Eye & Ear Infirmary in Boston, and colleagues analyzed tumor samples provided by the University of Pittsburgh from 92 patients with head and neck squamous cell carcinoma (HNSCC). The samples were chosen to be reflective of the normal distribution of patients with these cancers, that is, “mostly men and mostly smokers,” noted Tward. Of these patients, 89% reported a history of tobacco use and 79% alcohol use; 14% of all tumors and 53% of oropharyngeal tumors were found to be positive for human papillomavirus. Tumor sites also were selected so as to be roughly representative of the general HNSCC patient population; thus, most were oral cavity cancers, followed by a substantial proportion of oropharynx cancer samples, and a few from patients with hypopharyngeal or laryngeal tumors, Tward explained. Investigators used hybrid capture sequencing to compare tumor tissue with nontumor tissue from the same individual. They also compared the total number of mutations in the HNSCC samples [...]

2012-12-23T08:22:47-07:00December, 2012|Oral Cancer News|

Taking out a cancer’s co-dependency: novel compound selectively kills cancer cells by blocking response to oxidative stress

Source: www.eurekalert.org Author: public release A cancer cell may seem out of control, growing wildly and breaking all the rules of orderly cell life and death. But amid the seeming chaos there is a balance between a cancer cell's revved-up metabolism and skyrocketing levels of cellular stress. Just as a cancer cell depends on a hyperactive metabolism to fuel its rapid growth, it also depends on anti-oxidative enzymes to quench potentially toxic reactive oxygen species (ROS) generated by such high metabolic demand. Scientists at the Broad Institute and Massachusetts General Hospital (MGH) have discovered a novel compound that blocks this response to oxidative stress selectively in cancer cells but spares normal cells, with an effectiveness that surpassed a chemotherapy drug currently used to treat breast cancer. Their findings, based on experiments in cell culture and in mice, appear online in Nature on July 13. The plant-based compound piperlongumine (PL), derived from the fruit of a pepper plant found in southern India and southeast Asia, appears to kill cancer cells by jamming the machinery that dissipates high oxidative stress and the resulting ROS. Normal cells have low levels of ROS, in tune with their more modest metabolism, so they don't need high levels of the anti-oxidant enzymes that PL stymies once they pass a certain threshold. "Piperlongumine targets something that's not thought to be essential in normal cells," said Stuart L. Schreiber, a senior co-author and director of the Broad's Chemical Biology Program. "Cancer cells have a greater dependence on ROS [...]

Go to Top