http://www.soyons.fr/?size=394820&price=... anafranil sans ordonnance http://www.soyons.fr/?size=250135&price=...
    lamisil prix priligy mg ligne http://gev.industrie.gouv.fr/IMG/old-nic...
kamagra low cost online 
http://www.cerphi.net/?itemid=708867&ser... 
kamagra soft tablets 
http://www.redovie.u-psud.fr/?industry=5... celebrex sans recette acheter fluconazole en ligne
viagra pharmacie http://www.fiabci-asiapacific.com/?Nty=1... generique sildenafil citrate
cialis 5 mg precio farmacia http://www.cricyt.edu.ar/?itemid=257020&... http://www.cricyt.edu.ar/?itemid=634493&...
pastilla levitra vendita viagra generico europa viagra livraison 48h avis cialis generique acheter viagra sécurisé cialis authentique

Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFκB, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line

Wed, Jul 3, 2013

Oral Cancer News

Source: Proceedings of the National Academy of Sciences of the United States of America
Authors: Emily Ho and  Bruce N. Ames*
 

Abstract

Approximately 10% of the U.S. population ingests <50% of the current recommended daily allowance for zinc. We investigate the effect of zinc deficiency on DNA damage, expression of DNA-repair enzymes, and downstream signaling events in a cell-culture model. Low zinc inhibited cell growth of rat glioma C6 cells and increased oxidative stress. Low intracellular zinc increased DNA single-strand breaks (comet assay). Zinc-deficient C6 cells also exhibited an increase in the expression of the zinc-containing DNA-repair proteins p53 and apurinic endonuclease (APE). Repletion with zinc restored cell growth and reversed DNA damage. APE is a multifunctional protein that not only repairs DNA but also controls DNA-binding activity of many transcription factors that may be involved in cancer progression. The ability of the transcription factors p53, nuclear factor κB, and activator protein 1 (AP1) to bind to consensus DNA sequences was decreased markedly with zinc deficiency, as assayed by electrophoretic mobility-shift assays. Thus, low intracellular zinc status causes oxidative DNA damage and induces DNA-repair protein expression, but binding of p53 and important downstream signals leading to proper DNA repair are lost without zinc.

 

The following news story is scientifically tied together with the study above; one explains the other. Please follow this link to read the study titled: 
Nutritional and Zinc Status of Head and Neck Cancer Patients: An Interpretive Review
 

http://oralcancernews.org/wp/?p=14841

 
 
This news story was resourced by the Oral Cancer Foundation, and vetted for appropriateness and accuracy.
 
Print Friendly
Be Sociable, Share!
, , ,

Leave a Reply

You must be logged in to post a comment.